Portfolio by

SVEN BLASER

Description

The Hyperloop aims to revolutionize transportation by allowing for economical and efficient transit at nearly the speed of sound. I spent this summer working on the UCI HyperXite team, which is preparing to compete in the SpaceX Hyperloop Pod Competition in January of 2017.

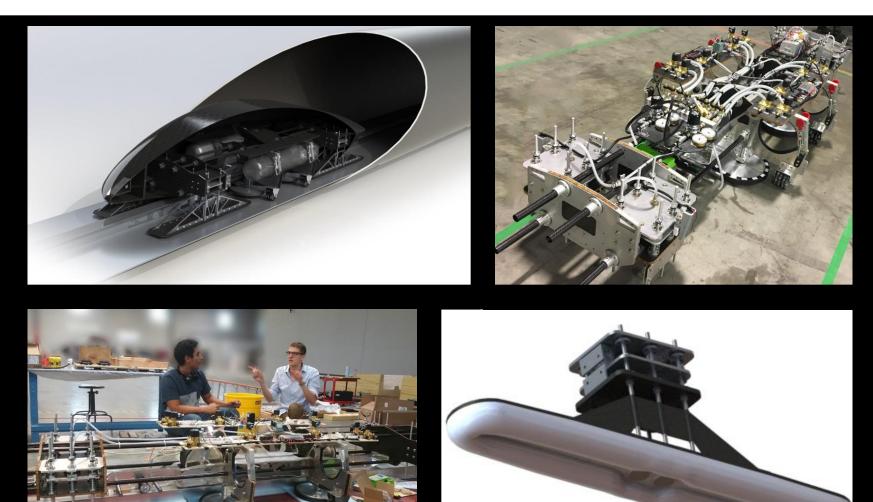
I was in charge of the team designing and manufacturing our levitation system, which is a flexible hovercraft-like skirt.

We developed an in house PVC vacuum forming process which was aided by ANSYS Fluent simulations to optimize the design of our skirts to withstand the 230 mph competition speeds.

Responsibilities

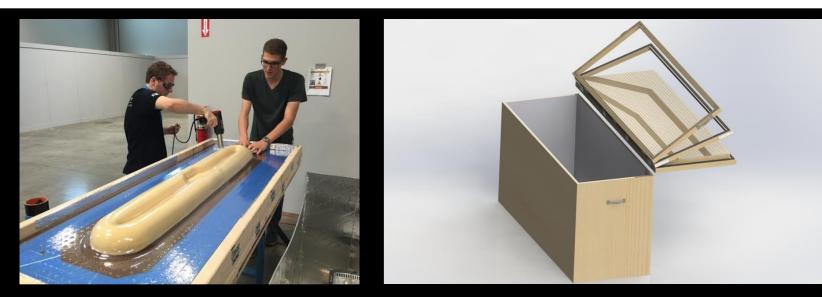
Levitation Team Lead

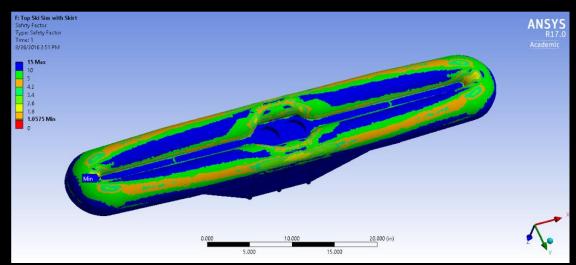
Design, manufacture, and test air levitation skirt and carbon fiber top ski


Fuselage Team Member

Assist mold making process for fuselage, levitation skirt, and levitation ski

Skills


ANSYS fluent Composites Mold making SOLIDWORKS Teamwork Testing Vacuum Forming



HyperXite pod design featuring air levitation

Skirt fabrication and simulation

Skirt Thickness Percentage Surface Plot

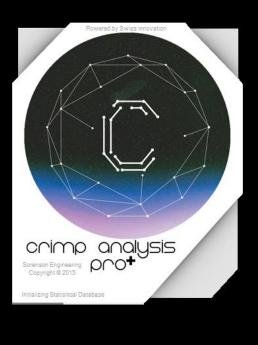
teach fiel

400 lbs low speed skirt test with 80 psi input

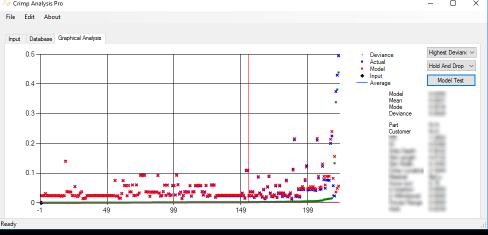
Description

As part of the quality department, I worked four consecutive summers learning both quality and engineering in a fast paced manufacturing environment.

Rotating through the positions of OGP inspector and FAIR inspector, I analyzed the production line as parts were machined and processed. I was tasked with optimizing some parts of the First Article process, and with training new employees on quality control equipment and procedures.


My greatest accomplishment at the internship was noticing the need for and creating software that uses empirical crimp forces data and a 13 variable algorithm as a prediction tool to save material and manufacturing time (estimated maximum savings of \$6400 per setup).

Skills


C# programming First Articles GD&T Multivariable statistics Research and Development Visual inspection

Responsibilities

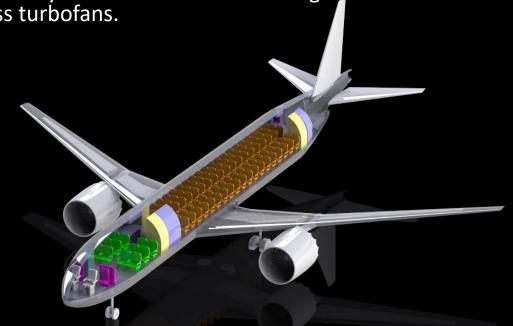
R&D for CAP⁺ program First Article inspector OGP inspector Quality control Reviewing First Article process Sorenson Engineering Internship

사 Cr	imp Analysis Pro								-		×		
File	Edit About												
Input	Database Gra	aphical Analysis											
Γ	Descriptive Input			Numeric Input			Output						
	Customer	~		Units	Millimeters		max Rev B			in			
	Part Number				3 6000		Day Rold			in			
	Material	×			2.6000		& Insettor Force			oz			
	# of Slots 4	\sim		Intel Daylin	6.0000		2 Witnessel Travel			oz			
	Contact Size	~		Be longh	6.0000		Force Range			oz			
	Hole Entry	~		So the	0.6300		Processes				i		
	CDB Effect	000 st 0.000 V		Comp Location	0.0480		1.100	Para					
				C. Percentege	0:0	%	C real Test	Street Palati	C United	10			
Γ	Customer Requirements						Calculate						
	Max Insertion	20.0000	oz	Insertion Pin	0.0950	in		Reset Fields					
	Min Withdrawal	8.0000	oz	Withdrawal Pin	0.0935	in		Undo					
Ready													
,													
										_	×		

Layout of my crimp forces prediction software

MAE 159 Aircraft Design

Description

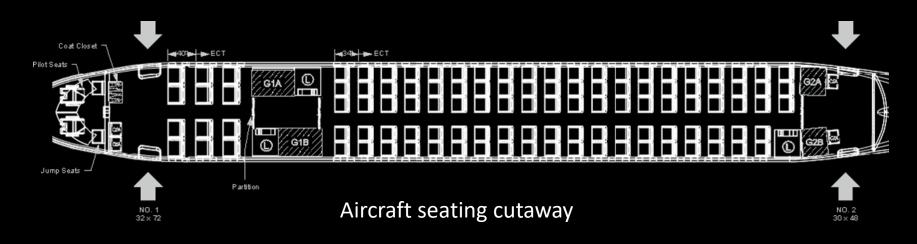

The goal of this airplane sizing study was to optimize and design two passenger jets through the analysis and interpretation of known aerodynamic equations and performance graphs. The aircraft were optimized by writing a MATLAB program.

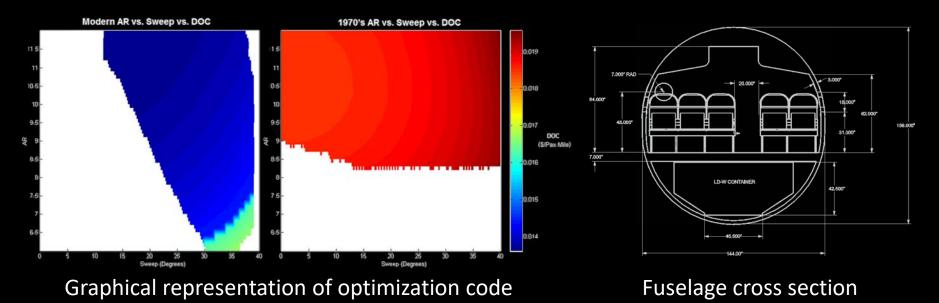
Each plane was modeled after the technological capabilities of its respective era, one is set in the 1970's, while the other can make use of modern engines, materials, and airfoils.

The main parameter which defines the performance of each aircraft is the Direct Operating Cost (DOC). After optimizing, the modern jet had a much lower DOC by a margin of 26%, most of the efficiency was due to the lower weight and TSFC of modern materials and high bypass turbofans.

Skills

Aircraft design Graph digitization Iterative optimization MATLAB SOLIDWORKS




MAE 159 Aircraft Design

683												
684		DragHeight = 30000;										
685		DragMach = 0.5;			48		1	7		1 3	<u>لينا بنا ا</u>	1.1
686		DragDensity = 8.91 * 10 ^ -4;				X		1 in				
687		DragViscocity = 3.107 * 10 ^ -7;			46	1	ti		**			
688		<pre>RNK = (DragDensity * 994 * DragMach) / DragViscocity;</pre>				N		Not Tal	Ce 1			÷ ••••
689		RNwing = RNK * S / b;			44	1		HEL JAM	0161			
690		[CfWing,ERRORCODE] = FunctionSkinFrictionFromReynolds (RNwing,ERRORCOD					1	jiry T	ake-off.	T 1		
691		RNfuselage = RNK * FuselageLength;			42		11/	*++	i S S			1
692		[Cffuselage,ERRORCODE] = FunctionSkinFrictionFromReynolds(RNfuselage	GUARANTEED CALIBRATION STAND	PERFORMANCE	40		N.					
693		CR = 2 * Sref / (b * (TaperRatio + 1)); & TaperRatio = ct/cr	p		40		TV.	1				
694 695		CT = TaperRatio*CR; MAC = 2/3 * (CR + CT - ((CR * CT)/(CR + CT)));		SEA LEVEL STATIC OUTPUT	38			N				
696		$\frac{\text{MAC} = 2/3 \text{ (CR + CI - ((CR + CI))(CR + CI)))}}{\text{Ymac} = b/6 \text{ ((CR + 2*CT)/(CR + CT)))}}$			38						100	
697		CTwet = (CR-(CR-CT)/(b/2) * FuselageDiameter/2);	RATING TAKE-OFF	THRUST-lbs. TSFC lb/hr/lb 45.500 0.355	36	1	5	VV				
698		MACwet = 2/3 * (CR + CTwet - ((CR * CTwet)/(CR + CTwet)));	MAXIMUM CONTINUOUS	38,500 0,337	.30		1 1	N	I F	Six Cont		+
699		SwetWing = 2*(S - MACwet * FuselageDiameter/2)*1.02;	MAXIMUM CLIMB	38,500 0.337	34	N	V		X	& Jack CL	T cint	
700		SwetFuselage = 0.9 * pi * FuselageDiameter * FuselageLength;	MAXIMUM CRUISE	35,500 0.332	.14	N	N		XX			
701		SwetNacelles = 2.1 * (TperEngine) * 0.5 * EnginesNumber;	* T. O. Thrust of 47,000 line, evellable to B6* F with water injection		32		IX.	10.	TXI			
702		[WingFormFactor,ERRORCODE] = Function11_3Shevell(tcRatio,Sweep,ERROR((40 lb. Insremse in weight for water injection equipment).				XX	1	A			
703		[BodyFormFactor,ERRORCODE] = Function11_4Shevel1(FinenessRatio,ERROR(GUARANTEED DRY WEIGHT		30			NIT	1 18	ax Cruis	e T	
704		<pre>Fwing = WingFormFactor * CfWing * SwetWing;</pre>	Including standard equipment 8770 lbs.		.30		IN	1	5/			
705		<pre>Ffuselage = BodyFormFactor * Cffuselage * SwetFuselage;</pre>	L. Cartes D		28				1			
706	Ę.	if EngineLocation == 0		-94.7*	20				N .50			
707		Fts = 0.35 * Fwing;	The starter	the second	Thrust 26							
708		else	on at		~1,000 lbs.					.95		
709		Fts = 0.45 * Fwing;	and the second second		24					X 6	3.1.6.	
710 711		end NacellesFormFactor = 1.25; % % % % % % % % % % % % % % % % % % %	- 11118181	A A A A A A A A A A A A A A A A A A A								
712		Fnacelles = NacellesFormFactor * CfWing * SwetNacelles;		and the second s	22						1.03	
713		Fpylons = 0.2 * Fnacelles;	Contraction of the second	TAK H						N	N.	70
714		Ftotal = (Fwing + Ffuselage + Fts + Fnacelles + Fpylons) * 1.06;			20							1
715		Cdo = Ftotal / Sref;		- Compared and the second							XI	
716		Edrag = 1/(1.035 + 0.38 * Cdo * pi * AR);	- The second second	at	18							1.15
717		**************************************										7
718		$CLap = CLmaxTO / (1.3^2);$	The second second		16				1			
719		[DeltaCdoAP,ERRORCODE] = FunctionIncrementalProfileDragForHighLiftSy:	129	2"					1.		. /	
720		CDap = Cdo + DeltaCdoAP + CLap^2/(pi*AR*Edrag);	STANDARD EQUIPMENT	ADDITIONAL EQUIPMENT	14				l.i	-	11	1.00
721		LDap = CLap/CDap;	(Included in angine price and dry weight)	(Available at increased price and increased dry weight)								
722		Wldg = WSldg * S ;	Fuel Control System Including Fuel Permp, Attitude Compensated Thrust and Speed Control Unit	Water Injection Equipment Including: Water Regulator	12				~			.85
723		TreqAP = Wldg / LDap;	Engine Ignition System Without Power Source Fuel Haater, Fuel Olf Cooler and Oll Tank Assemble	Piping Water Spray Nozzles					_//	-///	11	
724 725		VAP = ((296 * WSldg)/(0.925 * CLap))^0.5; Uap = VAP / 659;	Acoustic Treatment in Fan Discharge Air Passage Walls		10			11	11		111	.90
726		if EngineType == 0	Fireseal Exhaust Thermocouples and Pressure Probes					1_/	<u>A_</u> /_	111	1.1	.90
727		[TaAP,ERRORCODE] = JT8D9SeaLevel(1,Uap,ERRORCODE);	Rotating Spinner Provisions for Driving the Following Accessories:			H	1 1		A	11	111	4
728		else	High Pressure Rotor — Tachometer, Two Fluid Pumps, Starter and Constant Speed				1-1	1.	11	/-//-	11-	1.1.
729		[TaAP,ERRORCODE] = JT9D7SeaLevel(2,Uap,ERRORCODE);	Drive Unit Provision for Mounting an Alternator on the High			1-1		1.1.	AA	M	MH	1.0
730		end	Provision for Mounting an Alternator on the right Pressure Rator Gearbox and Low Pressure Rator Tachemoter			1	/		$\Lambda \Lambda$	M		
731		TaPerEngineAP = TperEngine /TSLST * TaAP;	Rotor (acnomotor			in the			1-1		4-6	1.3
732		GradAP = ((EnginesNumber - 1) * TaPerEngineAP - TreqAP) / Wldg * 100										
733		**************************************			2							
734		$CLLDG = CLmaxLDG / (1.3^2);$								- marine		4.0
735		[DeltaCdoLDG,ERRORCODE] = FunctionIncrementalProfileDragForHighLiftSy			0	<u>.</u>					i li	
736		CDLDG = Cdo + DeltaCdoLDG + CLLDG^2/(pi*AR*Edrag);						.2 .3		.5 .6	5.7	8.
737		LDLDG = CLLDG/CDLDG;				156	700-7		М	Sca	tanan t	
738		TreqLDG = WSldg * S / LDLDG;				1 (14 .)	51/-1			2011	rever	
739		Vldg = ((296 * WSldg)/(0.925 * CLLDG))^0.5;										
740 741		<pre>Uldg = Vldg / 659; if EngineType == 0 MATLAB code and JTS</pre>	D-7 Turbofan ne	rformance ch	naracte	ris	tic	°C				
741		[TaLDG_ERRORCODE] = JT8D9SeaLevel (1.Uldg_ERRORCODE);	<i>per rui bolali pe</i>		anacie			. ว				
712		[Tabba, EKKOKCODE] = OTOD Seale Ver (T, Ordg, EKKOKCODE) ,										

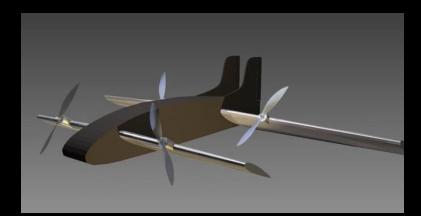
MAE 159 Aircraft Design

Quadcopter VTOL 3D Printing

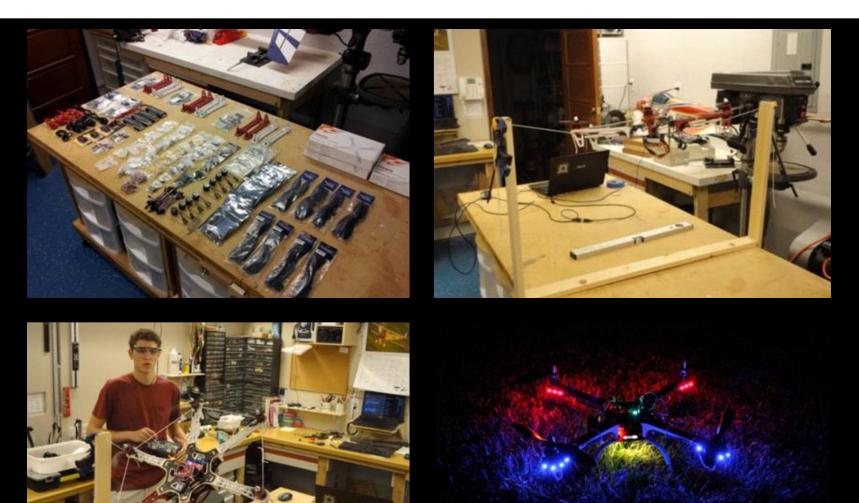
Description

Along with a small team of engineers, I worked on creating several UAVs with the goal of fulfilling DARPA's UAVForge Challenge requirements. Learning the basics of flight and PID calibration for a standard quadcopter gave us an insight into our VTOL design.

The VTOL aircraft is capable of transitioning from vertical to horizontal flight by rotating its wings independently. It is constructed out of wire cut foam, carbon fiber, wood, and ABS plastic. Rapid prototyping of the wing transition mechanism led to a quick fabrication process.

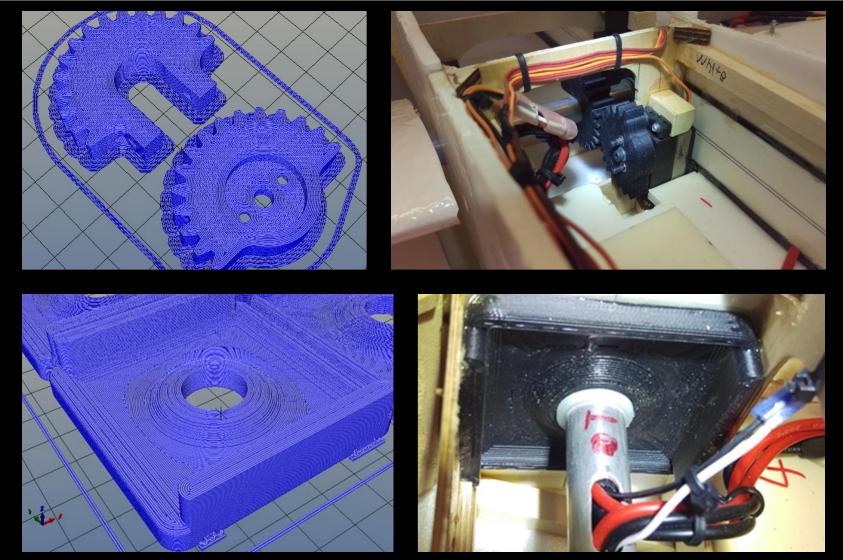

The VTOL aircraft is fully constructed and is awaiting calibration and the development of software which will allow for a smooth in-air transition.

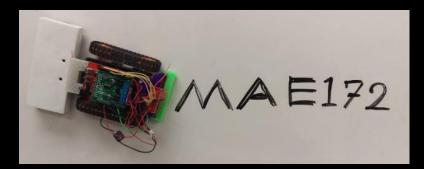
Responsibilities


- PID Calibration
- Designing and printing tilt-wing mechanism
- Manufacturing airframe

Skills

Additive manufacturing Ardupilot Autodesk Inventor Flying quadcopters Gear design PID calibration Soldering


Assembly and PID calibration


VTOL aircraft after construction, displaying independent tilt wing capabilities

3D printed gears for wing transition mechanism and housing for nylon wing axel bearing

Other Projects

Whiteboard cleaning robot with infrared marker detection (2016)

Self balancing skateboard (2012)

Vortex generators drag reduction (2015)

MAE 98 hovercraft champions (2013)

Contact Info

((•)) 909 279 5667 | Cell

in <u>Linkedin</u>

